4.1 Article

Development of a size-dependent aerosol deposition model utilising human airway epithelial cells for evaluating aerosol drug delivery

Journal

ATLA-ALTERNATIVES TO LABORATORY ANIMALS
Volume 32, Issue 6, Pages 581-590

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/026119290403200609

Keywords

aerosol drug delivery; Calu-3 cells; in vitro model; lung epithelium; SAEC

Ask authors/readers for more resources

Aerosol delivery to the airways of the human respiratory tract, followed by absorption, constitutes an alternative route of administration for compounds unsuitable for delivery by conventional oral and parenteral routes. The target for aerosol drug delivery is the airways epithelium, i.e. tracheal, bronchial, bronchiolar and alveolar cells, which become the site of drug deposition. These epithelial layers also serve as a barrier to the penetration of inhaled material. An in vitro model for aerosol deposition and transport across epithelia in the human airways may be a good predictor of in vivo disposition. The present preliminary studies begin an investigation that blends the dynamics of aerosol delivery and the basis of an in vitro simulated lung model to evaluate the transport properties of a series of molecular weight marker compounds across human-derived bronchiolar epithelial cell monolayers. An Andersen viable cascade impactor was used as a delivery apparatus for the deposition of size-segregated particles onto monolayers of small airway epithelial cells and Calu-3 cells. it was shown that these cell layers can withstand placement in the impactor, and that permeability can be tested subsequent to removal from the impactor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available