4.5 Article

Surface chemistry mediates adhesive structure, cytoskeletal organization, and fusion of macrophages

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 71A, Issue 3, Pages 439-448

Publisher

WILEY
DOI: 10.1002/jbm.a.30165

Keywords

silicone modification; polyurethanes; cytoskeleton reorganization; mannose receptor expression; IL-4

Funding

  1. NHLBI NIH HHS [HL-25239] Funding Source: Medline
  2. NIBIB NIH HHS [EB-00275] Funding Source: Medline

Ask authors/readers for more resources

Surface chemistry modulates many critical functions of monocyte/macrophages such as adhesion, fusion, spreading, phagocytosis, and secretion. In this study, we investigated the effect of silicone modification on adhesive structure development and cytoskeletal reorganization of adherent macrophages on polyurethanes. Confocal scanning laser microscopy (CSLM) was used for qualitative and quantitative evaluation of cytoskeletal reorganization of adherent macrophages. Data presented here showed less spreading for adherent cells on silicone-modified materials due to the higher hydrophobicity and protein adsorption profile. This decrease in spreading was accompanied by less F-actin content in adherent cells on silicone-modified polyurethanes and PDMS control, indicating that silicone modification reduces the strength of adhesion. With the addition of interleukin-4 (IL-4) at days 3 and 7 to our culture, adherent cell morphology dramatically changed. The change in morphology led to higher macrophage fusion and foreign body giant cell (FBGC) formation on silicone modified materials after 10 days. In addition, marmose receptor (MR) expression was up-regulated on the silicone-modified polyurethanes and PDMS control in the presence of IL-4. Up-regulation of MR expression suggests an alternatively activated phenotype for adherent macrophages, which is accompanied with an attenuated proinflammatory cytokine production and reactive oxygen secretion. It appears that silicone modification accelerates acquisition of an alternative macrophage and FBGC phenotype, which may then result in increased polyurethane biostability. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available