4.1 Article

Using ellipsoids to model charge distributions in gas phase protein complex ion dissociation

Journal

CANADIAN JOURNAL OF CHEMISTRY
Volume 82, Issue 12, Pages 1736-1744

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/V04-154

Keywords

protein complex dissociation; ellipsoid charge model; charge asymmetry

Ask authors/readers for more resources

Gas phase protein complex dissociation was modelled using ellipsoids on which discrete charges were placed in randomly chosen charge sites. A number of sizes, shapes, orientations, and types of ellipsoids were considered. For each case, charge transfer parameters and electrostatic energies were calculated as a function of the fractional surface area. It was found that to within 10-15%, the charge on product ions after dissociation is distributed according to their fractional surface area. This can imply, for example, that in experiments measuring the dissociation of homodimers, charge asymmetries of greater than 10-15% in the product ions signal that one of the ions has greatly increased its surface area, such as would occur with unfolding. This assumes that proton transfer occurs on a timescale fast enough that the dissociation products adopt the minimum electrostatic energy configuration. Calculation of this energy shows that it is minimized when one or more of the monomers is in an extended conformation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available