4.6 Article

Endohedral silicon nanotubes as thinnest silicide wires

Journal

PHYSICAL REVIEW B
Volume 70, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.241303

Keywords

-

Ask authors/readers for more resources

Using ab initio calculations, we describe how the smallest silicon nanotubes of (2,2) and (3,0) chiral symmetries are stabilized by the axially placed metal atoms, to form nearly one-dimensional structures with substantial cohesive energy, mechanical stiffness, and metallic density of electronic states. Their further reconstructions lead to thicker and shorter wires, while relative stability can be viewed in a binary field diagram of MxSi1-x, and depends on chemical potentials of the components. A comparison with recent epitaxial-growth experiments reveals the equivalence of the (2,2) endohedral nanotubes with the thinnest possible experimental wires.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available