4.8 Article

Rate of molecular evolution of the seminal protein gene SEMG2 correlates with levels of female promiscuity

Journal

NATURE GENETICS
Volume 36, Issue 12, Pages 1326-1329

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ng1471

Keywords

-

Ask authors/readers for more resources

Postcopulatory sperm competition is a key aspect of sexual selection and is believed to drive the rapid evolution of both reproductive physiology and reproduction-related genes(1-4). It is well-established that mating behavior determines the intensity of sperm competition, with polyandry (i.e., female promiscuity) leading to fiercer sperm competition than monandry(1-3). Studies in mammals, particularly primates, showed that, owing to greater sperm competition, polyandrous taxa generally have physiological traits that make them better adapted for fertilization than monandrous species, including bigger testes, larger seminal vesicles, higher sperm counts, richer mitochondrial loading in sperm and more prominent semen coagulation(2,5-8). Here, we show that the degree of polyandry can also impact the dynamics of molecular evolution. Specifically, we show that the evolution of SEMG2, the gene encoding semenogelin II, a main structural component of semen coagulum, is accelerated in polyandrous primates relative to monandrous primates. Our study showcases the intimate relationship between sexual selection and the molecular evolution of reproductive genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available