4.7 Article

Convergent evolution of strigiform and caprimulgiform dark-activity is supported by phylogenetic analysis using the arylalkylamine N-acetyltransferase (Aanat) gene

Journal

MOLECULAR PHYLOGENETICS AND EVOLUTION
Volume 33, Issue 3, Pages 908-921

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ympev.2004.08.015

Keywords

Strigiformes; Caprimulgiformes; Falconiformes; Cireadian; Avian; evolution; nocturnal; crepuscular

Ask authors/readers for more resources

Alternative hypotheses propose the sister order of owls (Strigiformes) to be either day-active raptors (Falconiformes) or dark-active nightjars and allies (Caprimulgiformes). In an effort to identify molecular characters distinguishing between these hypotheses we examined a gene, arylalkylarnine N-acetyltransferase (Aanat), potentially associated with the evolution of avian dark-activity. Partial Aanat coding sequences, and two introns, were obtained from the genomic DNA of 16 species: Strigiformes (four species), Falconiformes (four species), Caprimulgiformes (five species), with outgroups: Ciconiiformes (one species), Passeriformes (one species), and Apterygiformes (one species). Phylogenetic trees derived from aligned, evolutionarily conserved Aanat regions did not consistently recover clades corresponding to orders Strigiformes and Falconiformes but did place a caprimulgiform. clade more distant from the strigiform and falconiform species than the latter two groups are to each other. This finding was supported by spectral analysis. The taxonomic distribution of seven intronic indels is consistent with the Aanat derived phylogenetic trees and supports conventional family-level groupings within both Strigiformes and Caprimulgiformes. The phylogenetic analyses also indicate that Caprimulgiformes is a polyphyletic grouping. In conclusion the data support, but do not conclusively prove, the proposal that Falconiformes is the sister order to Strigiformes and therefore, that the dark-activity characteristic of Strigiformes and Caprimulgiformes arose by convergent evolution. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available