4.5 Article

Dissociation between short-term increased graft survival and long-term functional improvements in Parkinsonian rats overexpressing glial cell line-derived neurotrophic factor

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 20, Issue 11, Pages 3121-3130

Publisher

WILEY
DOI: 10.1111/j.1460-9568.2004.03770.x

Keywords

dopamine; glial cell line-derived neurotrophic factor; lentivirus; transplantation; tyrosine hydroxylase

Categories

Ask authors/readers for more resources

The present study was designed to analyse whether continuous overexpression of glial cell line-derived neurotrophic factor (GDNF) in the striatum by a recombinant lentiviral vector can provide improved cell survival and additional long-term functional benefits after transplantation of fetal ventral mesencephalic cells in Parkinsonian rats. A four-site intrastriatal 6-hydroxydopamine lesion resulted in an 80-90% depletion of nigral dopamine cells and striatal fiber innervation, leading to stable motor impairments. Histological analysis performed at 4 weeks after grafting into the GDNF-overexpressing striatum revealed a twofold increase in the number of surviving tyrosine hydroxylase (TH)-positive cells, as compared with grafts placed in control (green fluorescent protein-overexpressing) animals. However, in animals that were allowed to survive for 6 months, the numbers of surviving TH-positive cells in the grafts were equal in both groups, suggesting that the cells initially protected at 4 weeks failed to survive despite the continued presence of GDNF. Although cell survival was similar in both grafted groups, the TH-positive fiber innervation density was lower in the GDNF-treated grafted animals (30% of normal) compared with animals with control grafts (55% of normal). The vesicular monoamine transporter-2-positive fiber density in the striatum, by contrast, was equal in both groups, suggesting that long-term GDNF overexpression induced a selective down-regulation of TH in the grafted dopamine neurons. Behavioral analysis in the long-term grafted animals showed that the control grafted animals improved their performance in spontaneous motor behaviors to approximately 50% of normal, whereas the GDNF treatment did not provide any additional recovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available