4.5 Article

Identification and characterization of a Ca2+-sensitive interaction of the vanilloid receptor TRPV1 with tubulin

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 91, Issue 5, Pages 1092-1103

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2004.02795.x

Keywords

calcium dependence; capsaicin receptor; cytoskeleton interaction; transient receptor potential V1

Ask authors/readers for more resources

The vanilloid receptor TRPV1 plays a well-established functional role in the detection of a range of chemical and thermal noxious stimuli, such as those associated with tissue inflammation and the resulting pain. TRPV1 activation results in membrane depolarization, but may also trigger intracellular Ca2+-signalling events. In a proteomic screen for proteins associated with the C-terminal sequence of TRPV1, we identified beta-tubulin as a specific TRPV1-interacting protein. We demonstrate that the TRPV1 C-terminal tail is capable of binding tubulin dimers, as well as of binding polymerized microtubules. The interaction is Ca2+-sensitive, and affects microtubule properties, such as microtubule sensitivity towards low temperatures and nocodazole. Our data thus provide compelling evidence for the interaction of TRPV1 with the cytoskeleton. The Ca2+-sensitivity of this interaction suggests that the microtubule cytoskeleton at the cell membrane may be a downstream effector of TRPV1 activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available