4.3 Article

The GC-rich transposon Bytmar1 from the deep-sea hydrothermal crab, Bythograea thermydron, may encode three transposase isoforms from a single ORF

Journal

JOURNAL OF MOLECULAR EVOLUTION
Volume 59, Issue 6, Pages 747-760

Publisher

SPRINGER
DOI: 10.1007/s00239-004-2665-0

Keywords

repeats; transposon; Crustacea; Bythograea thermydron

Ask authors/readers for more resources

Mariner-like elements (MLEs) are classII transposons with highly conserved sequence properties and are widespread in the genome of animal species living in continental environments. We describe here the first full-length MLE found in the genome of a marine crustacean species, the deep-sea hydrothermal crab Bythograea thermydron (Crustacea), named Bytmar1. A comparison of its sequence features with those of the MLEs contained in the genomes of continental species reveals several distinctive characteristics. First, Bytinar1 elements contains an ORF that may encode three transposase isoforms 349, 379, and 398 amino acids (aa) in long. The two biggest proteins are due to the presence of a 30- and 49-aa flag, respectively, at the N-terminal end of the 349-aa cardinal MLE transposase. Their GC contents are also significantly higher than those found in continental MLEs. This feature is mainly due to codon usage in the transposase ORF and directly interferes with the curvature propensities of the Bytmar1 nucleic acid sequence. Such an elevated GC content may interfere with the ability of Bytmar 1 to form an excision complex and, in consequence, with its efficiency to transpose. Finally, the origin of these characteristics and their possible consequences on transposition efficiency are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available