4.2 Article

Mouse Nkd1, a Wnt antagonist, exhibits oscillatory gene expression in the PSM under the control of Notch signaling

Journal

MECHANISMS OF DEVELOPMENT
Volume 121, Issue 12, Pages 1443-1453

Publisher

ELSEVIER
DOI: 10.1016/j.mod.2004.08.003

Keywords

subtraction; somitogenesis; Wnt signaling; Mesp2; segmentation clock

Ask authors/readers for more resources

During vertebrate embryogenesis, the formation of reiterated structures along the body axis is dependent upon the generation of the somite by segmentation of the presomitic mesoderm (PSM). Notch signaling plays a crucial role in both the generation and regulation of the molecular clock that provides the spatial information for PSM cells to form somites. In a screen for novel genes involved in somitogenesis, we identified a gene encoding a Wnt antagonist, Nkd1, which is transcribed in an oscillatory manner, and may represent a new member of the molecular clock constituents. The transcription of nkd1 is extremely downregulated in the PSM of vestigial tail (vt/vt), a hypomorphic mutant of Wnt3a, whereas nkd1 oscillations have a similar phase to lunatic fringe (L-fng) transcription and they are arrested in Hes7 (a negative regulator of Notch signaling) deficient embryos. These results suggest that the transcription of nkd1 requires Wnt3a, and that its oscillation patterns depend upon the function of Hes7 Wnt signaling has been postulated to be upstream of Notch signaling but we demonstrate in this study that a Wnt-signal-related gene may also be regulated by Notch signaling. Collectively, our data suggest that the reciprocal interaction of Notch and Wnt signals, and of their respective negative feedback loops, function to organize the segmentation clock required for somitogenesis. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available