4.3 Article

Enzyme classification by ligand binding

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 57, Issue 4, Pages 711-724

Publisher

WILEY-LISS
DOI: 10.1002/prot.20277

Keywords

enzyme classification; biochemical function; protein-ligand interaction; functional genomics; point set similarity

Funding

  1. NHGRI NIH HHS [1R43HG2559-01] Funding Source: Medline

Ask authors/readers for more resources

The problem of assigning a biochemical function to newly discovered proteins has been traditionally approached by expert enzymological analysis, sequence analysis, and structural modeling. In recent years, the appearance of databases containing protein-ligand interaction data for large numbers of protein classes and chemical compounds have provided new ways of investigating proteins for which the biochemical function is not completely understood. In this work, we introduce a method that utilizes ligand-binding data for functional classification of enzymes. The method makes use of the existing Enzyme Commission (EC) classification scheme and the data on interactions of small molecules with enzymes from the BRENDA database. A set of ligands that binds to an enzyme with unknown biochemical function serves as a query to search a protein-ligand interaction database for enzyme classes that are known to interact with a similar set of ligands. These classes provide hypotheses of the query enzyme's function and complement other computational annotations that take advantage of sequence and structural information. Similarity between sets of ligands is computed using point set similarity measures based upon similarity between individual compounds. We present the statistics of classification of the enzymes in the database by a cross-validation procedure and illustrate the application of the method on several examples. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available