4.5 Article

Cellular alignment by grafted adhesion peptide surface density gradients

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 71A, Issue 3, Pages 403-411

Publisher

WILEY
DOI: 10.1002/jbm.a.30137

Keywords

fibroblast; surface interaction; tissue engineering; polymer; haptotaxis

Ask authors/readers for more resources

The extracellular matrix and extracellular matrix-associated proteins play a major role in growth and differentiation of tissues and organs. To date, few methods have been developed that allow researchers to examine the affect of surface density gradients of adhesion molecules in a controlled manner. Fibroblasts cultured on surfaces with a surface density gradient of RGD peptide aligned parallel to the gradient while fibroblasts on constant density RGD surfaces spread but did not align as has been shown in numerous earlier studies. Not only did fibroblasts align on the gradient surfaces, but they also showed significantly greater elongation than on constant density peptide surfaces or on control surfaces. This type of method is easy to replicate and can be used by laboratories interested in investigating alignment of various cell types without mechanical force or other stimulation, and without cell-cell interaction or for investigation of affects of surface density gradients of molecules on cellular biochemistry and biophysics. This method also has potential applications for developing scaffolds for tissue engineering applications where cellular alignment is necessary. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available