4.4 Article

The Na+/H+ exchanger regulatory factor stabilizes epidermal growth factor receptors at the cell surface

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 15, Issue 12, Pages 5470-5480

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E04-03-0239

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA-58689, CA-96504, R01 CA096504] Funding Source: Medline

Ask authors/readers for more resources

Ligand binding to cell surface receptors initiates both signal transduction and endocytosis. Although signaling may continue within the endocytic compartment, down-regulation is the major mechanism that controls the concentration of cell surface receptors, their ability to receive environmental signals, and the ultimate strength of biological signaling. Internalization, recycling, and trafficking of receptor tyrosine kinases (RTKs) within the endosome compartment are each regulated to control the overall process of down-regulation. We have identified the Na+/H+ exchanger regulatory factor (NHERF) as an important molecular component that stabilizes epidermal growth factor receptors (EGFRs) at the cell surface to restrict receptor down-regulation. The NH2-terminal PDZ domain (PDZ 1) of NHERF specifically binds to an internal peptide motif located within the COOH-terminal regulatory domain of EGFR. Expression of NHERF slows the rate of EGF-induced receptor degradation. A point mutation that abolishes the PDZ I recognition sequence of EGFR enhances the rate of ligand-induced endocytosis and down-regulation of EGFR. Similarly, expression of a dominant negative mutant of NHERF enhances EGF-induced receptor down-regulation. In contrast to beta-adrenergic receptors where NHERF enhances recycling of internalized receptors, NHERF stabilizes EGFR at the cell surface and slows the rate of endocytosis without affecting recycling. Although the mechanisms differ, for both RTKs and G protein-coupled receptors, the overall effect of NHERF is to enhance the fraction of receptors present at the cell surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available