4.5 Article

Vaccination with autoantigen protects against aggregated β-amyloid and glutamate toxicity by controlling microglia:: effect of CD4+CD25+ T cells

Journal

EUROPEAN JOURNAL OF IMMUNOLOGY
Volume 34, Issue 12, Pages 3434-3445

Publisher

WILEY
DOI: 10.1002/eji.200424883

Keywords

neuroprotection; T cell-based vaccination; protective autoimmunity; CNS injury; Alzheimer's disease

Categories

Ask authors/readers for more resources

Neurodegenerative diseases differ in etiology but are propagated similarly. We show that neuronal loss caused by intraocular injection of aggregated beta-amyloid was significantly greater in immunodeficient mice than in normal mice. The neurodegeneration was attenuated or augmented by elimination or addition, respectively, of naturally occurring CD4(+)CD25(+) regulatory T cells (Treg). Vaccination with retina-derived antigens or with the synthetic copolymer glatiramer acetate (Copolymer-1, Cop-1), but not with beta-amyloid, reduced the ocular neuronal loss. In mouse hippocampal slices, microglia encountering activated T cells overcame the cytotoxicity of aggregated beta-amyloid. These findings support the concept of protective autoimmunity, show that a given T cell-based vaccination is protective at a particular site irrespective of toxicity type, and suggest that locally activated T cells induce a microglial phenotype that helps neurons withstand the insult. Alzheimer's and other neurodegenerative diseases might be arrested or retarded by vaccination with Cop-1 or related compounds or by treatment with compounds that weaken Treg suppression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available