4.5 Article Proceedings Paper

Molecular mechanisms of neuroplasticity and pharmacological implications: the example of tianeptine

Journal

EUROPEAN NEUROPSYCHOPHARMACOLOGY
Volume 14, Issue -, Pages S497-S502

Publisher

ELSEVIER
DOI: 10.1016/j.euroneuro.2004.09.008

Keywords

glutamatergic transmission; stress; depression; amygdala; dendritic remodelling; tianeptine

Ask authors/readers for more resources

The hippocampal formation, which expresses high levels of adrenal steroid receptors, is a malleable brain structure that is important for certain types of learning and memory. This structure is also vulnerable to the effects of stress hormones which have been reported to be increased in depressed patients, particularly those with severe depression. The amygdala, a structure that plays a critical role in fear learning, is also an important target of anxiety and stress. Certain animal models of depression involve application of repeated stress. Repeated stress promotes behavioral changes that can be associated with these two brain structures such as impairment of hippocarnpus-dependent memory and enhancement of fear and aggression, which are likely to reflect amygdala function. At a cellular level, opposite responses in the hippocampus and amygdala are observed, namely, shrinkage of dendrites in hippocampus and growth of dendrites in the lateral amygala, involving in both cases a remodeling of dendrites. Furthermore, stress-induced suppression of neurogenesis has been noted in dentate gyrus. At a molecular level, the effects of repeated stress in the hippocampus involve excitatory amino acids and the induction of the glial form of the glutamate transporter. Chronic treatment with the antidepressant tianeptine may prevent these effects in hippocampus and amygdala. (C) 2004 Elsevier B.V. and ECNP. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available