4.2 Article

Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTeSb2Te3 pseudobinary systems

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0108768104022906

Keywords

-

Ask authors/readers for more resources

The most widely used memory materials for rewritable phase-change optical disks are the GeTe-Sb2Te3 pseudobinary compounds. Among these compounds, Ge2Sb2Te5 crystallizes into a cubic close-packed structure with a six-layer period (metastable phase) in the non-thermal equilibrium state, and a trigonal structure with a nine-layer period ( stable phase) in the thermal equilibrium state. The structure of the stable phase has Ge/Sb layers in which Ge and Sb are randomly occupied, as does the structure of the metastable phase, while the conventionally estimated structure had separate layers of Ge and Te. The metastable and stable phases are very similar in that Te and Ge/Sb layers stack alternately to form the crystal. The major differences between these phases are: (i) the stable phase has pairs of adjacent Te layers that are not seen in the metastable phase and (ii) only the metastable phase contains vacancies of ca 20 at. % in the Ge/Sb layers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available