4.5 Article

A simple process-based model for estimating ammonia emissions from agricultural land after fertilizer applications

Journal

SOIL USE AND MANAGEMENT
Volume 20, Issue 4, Pages 365-372

Publisher

C A B I PUBLISHING
DOI: 10.1079/SUM2004280

Keywords

ammonia emissions; fertilizer; model; fertilizer type; temperature; rainfall

Categories

Ask authors/readers for more resources

Fertilizer applications to agricultural land are a significant source of ammonia (NH3) emission to the atmosphere, accounting for approximately 10% of the total emissions from agriculture. Current estimates of emissions from fertilizer applications use 'fixed' emission factors. This paper describes a model in which the emission factors are expressed as a function of the important influencing variables: fertilizer type, soil pH, land use, application rate, rainfall and temperature. Total emission in 2002 for the UK were estimated by running the model for a 'standard UK' scenario, viz. 28.7 kt NH3-N, which compares well with the UK inventory estimate of 30.4 kt NH3-N. Differences exist in the estimates for specific fertilizer types, with the mean emission factor for urea applications to grassland, in particular, being lower by use of this model (13% compared with 23% of applied N for the UK inventory). Emission estimates were most sensitive to temperature and fertilizer type. Scenario testing showed that significant reductions in emission could be achieved by replacing urea with other forms of N fertilizer, by combining urea use with a urease inhibitor, or by modifying some management practices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available