4.4 Article

Destabilisation of a compressed vortex by a round jet

Journal

EXPERIMENTS IN FLUIDS
Volume 37, Issue 6, Pages 856-871

Publisher

SPRINGER
DOI: 10.1007/s00348-004-0869-0

Keywords

-

Ask authors/readers for more resources

This paper presents data and analysis related to the compression and the breakdown of a tumbling motion after radial disruption in a simple geometry of the compression chamber of a model engine with large optical access. The disruption is a round jet injection perpendicular to the vorticity tube. Two configurations of injection are selected. They correspond respectively to a straight jet that competes with the tumble and an inclined jet that adds angular momentum to the large-scale rotating motion. The ratio between the angular momentum brought by the spray and the initial angular momentum of the tumble is of the order of 30% and is representative of the direct-injection engine situation at moderate rotation rate. The injection is performed at bottom dead centre (BDC) in a well-defined and well-known tumbling motion. The data are obtained in the symmetry plane of a square chamber by using particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF). A calibration is made in order to take account of acetone fluorescence yield during compression. The analysis of the injection phase at BDC shows that the mean topology of the flow after both injections differs significantly and that the vorticity tube is significantly distorted only in the vicinity of the injection plane. Strong transverse mean flows are detected by analysing the divergence of the mean velocity field. Although a mean rotation is still observed after injection during the compression phase, the authors show that no strong vortex core is evident. An important consequence of this finding, confirmed by the evolution of the global in-plane mean and fluctuating kinetic energy in the symmetry plane is that no vortex breakdown occurs during the compression after the injection event. Therefore, the global fluctuating kinetic energy at the end of the compression is much lower after an injection. During the first half of the compression, an inhomogeneous distribution of the jet fluid in the chamber is detected by the PLIF measurements. The transport of the jet fluid clearly results from both in-plane and out-of-plane motions triggered by the injection jet. This spatial repartition depends strongly on the injection strategy and can be very difficult to control accurately from cycle to cycle. The mixture is more homogeneous at top dead centre (TDC) with a low value of the spatial variance of the mean concentration field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available