3.9 Article

Retinal cryptochrome in a migratory passerine bird:: a possible transducer for the avian magnetic compass

Journal

NATURWISSENSCHAFTEN
Volume 91, Issue 12, Pages 585-588

Publisher

SPRINGER
DOI: 10.1007/s00114-004-0578-9

Keywords

-

Ask authors/readers for more resources

The currently discussed model of magnetoreception in birds proposes that the direction of the magnetic field is perceived by radical-pair processes in specialized photoreceptors, with cryptochromes suggested as potential candidate molecules mediating magnetic compass information. Behavioral studies have shown that magnetic compass orientation takes place in the eye and requires light from the blue-green part of the spectrum. Cryptochromes are known to absorb in the same spectral range. Because of this we searched for cryptochrome (CRY) in the retina of European robins, Erithacus rubecula, passerine birds that migrate at night. Here, we report three individually expressed cryptochromes, eCRY1a, eCRY1b, and eCRY2. While eCRY1a and eCRY2 are similar to the cryptochromes found in the retina of the domestic chicken, eCRY1b has a unique carboxy (C)-terminal. In light of the 'radical-pair' model, our findings support a potential role of cryptochromes as transducers for the perception of magnetic compass information in birds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available