4.3 Article Proceedings Paper

Low-power wireless on-chip microparticle manipulation system

Journal

JAPANESE JOURNAL OF APPLIED PHYSICS
Volume 54, Issue 4, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.7567/JJAP.54.04DE10

Keywords

-

Funding

  1. [24656231]
  2. Grants-in-Aid for Scientific Research [24656231] Funding Source: KAKEN

Ask authors/readers for more resources

In order to realize an easy-to-use on-chip microparticle manipulation system, a chip that can manipulate microparticles by pulse-driven dielectrophoresis (DEP) in a solution with wireless power reception function was designed. Considering both of the DEP operation and power consumption of the chip, the internal supply voltage and the DEP driving signal frequency for CMOS digital circuits including the ring oscillator were assigned to about 0.5 V and about 1 MHz, respectively. The simulation results of wireless power transfer reveals that the use of higher-frequency (13MHz) and input-matching circuits improve power transfer efficiency (4.7% for the rectification and DEP driving signal generation) and a smaller required available power of the AC power source (19.2 mW). The chip fabricated in a 180nm triple-well CMOS process demonstrates the wireless on-chip DEP operation. Compared with power transfer systems using an off-chip transformer, the small primary coil on the PCB and the on-chip secondary coil dominate the power dissipation. (C) 2015 The Japan Society of Applied Physics

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available