4.5 Article

New insights on the evolution of the SMN1 and SMN2 region:: simulation and meta-analysis for allele and haplotype frequency calculations

Journal

EUROPEAN JOURNAL OF HUMAN GENETICS
Volume 12, Issue 12, Pages 1015-1023

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.ejhg.5201288

Keywords

SMN1; SMN; spinal muscular atrophy; copy number; genetic counseling; risk assessment

Ask authors/readers for more resources

Most spinal muscular atrophy patients lack both copies of SMN1. Loss of SMN1 ('0-copy alleles') can occur by gene deletion or SMN1-to-SMN2 gene conversion. Despite worldwide efforts to map the segmental duplications within the SMN region, most assemblies do not correctly delineate these genes. A near pericentromeric location provides impetus for the strong evidence that SMN1 and SMN2 arose from a primate-specific paralogous gene duplication. Here we meta-analyzed our recent laboratory results together with available published data, in order to calculate new mutation rates and allele/haplotype frequencies in this recalcitrant and highly unstable region of the human genome. Based on our tested assumption of compliance with Hardy-Weinberg equilibrium, we conclude that the SMN1 allele frequencies are: '0-copy disease alleles,' 0.013; '1-copy normal alleles,' 0.95; '2-copy normal alleles (ie, two copies of SMN1 on one chromosome),' 0.038; and '1 D disease alleles (SMN1 with a small intragenic mutation),' 0.00024. The SMN1 haplotype ['(SMN1 copy number)-(SMN2 copy number)'] frequencies are: '0-0,' 0.00048; '0-1,' 0.0086; '0-2,' 0.0042; '1-0,' 0.27; '1-1,' 0.66; '1-2,' 0.015; '2-0,' 0.027; and '2-1,' 0.012. Paternal and maternal de novo mutation rates are 2.1x10(-4) and 4.2x10(-5), respectively. Our data provide the basis for the most accurate genetic risk calculations, as well as new insights on the evolution of the SMN region, with evidence that nucleotide position 840 ( where a transition 840C>T functionally distinguishes SMN2 from SMN1) constitutes a mutation hotspot. Our data also suggest selection of the 1-1 haplotype and the presence of rare chromosomes with three copies of SMN1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available