4.7 Article

Role of podocytes for reversal of glomerulosclerosis and proteinuria in the aging kidney after endothelin inhibition

Journal

HYPERTENSION
Volume 44, Issue 6, Pages 974-981

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.HYP.0000149249.09147.b4

Keywords

arterial presure; nephrosclerosis; DNA; kidney failure; renal artery; expression; kidney; renal disease

Ask authors/readers for more resources

The cause of focal-segmental glomerulosclerosis as a consequence of physiological aging, which is believed to be inexorable, is unknown. This study investigated whether inhibition of endothelin-1, a growth-promoting peptide contributing to renal injury in hypertension and diabetes, affects established glomerulosclerosis and proteinuria in the aged kidney. We also determined the role of endothelin receptors for podocyte injury in vivo and in vitro. Aged Wistar rats, a model of spontaneous age-dependent glomerulosclerosis, were treated with the orally active endothelin subtype A ( ETA) receptor antagonist darusentan, and evaluation of renal histology, renal function studies, and expression analyses were performed. In vitro experiments using puromycin aminonucleoside to induce podocyte injury investigated the role of ETA receptor signaling for apoptosis, cytoskeletal injury, and DNA synthesis. In aged Wistar rats, established glomerulosclerosis and proteinuria were reduced by > 50% after 4 weeks of darusentan treatment, whereas blood pressure, glomerular filtration rate, or tubulo-interstitial renal injury remained unaffected. Improvement of structural injury in glomeruli and podocytes was accompanied by a reduction of the expression of matrix metalloproteinase-9 and p21(Cip1/WAF1). In vitro experiments blocking ETA receptors using specific antagonists or RNA interference prevented apoptosis and structural damage to podocytes induced by puromycin aminonucleoside. In conclusion, these results support the hypothesis that endogenous endothelin contributes to glomerulosclerosis and proteinuria in the aging kidney. The results further suggest that age-dependent glomerulosclerosis is not merely a degenerative but a reversible process locally confined to the glomerulus involving recovery of podocytes from previous injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available