4.6 Article

Top-gated graphene field-effect-transistors formed by decomposition of SiC

Journal

APPLIED PHYSICS LETTERS
Volume 92, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2889959

Keywords

-

Ask authors/readers for more resources

Top-gated, few-layer graphene field-effect transistors (FETs) fabricated on thermally decomposed semi-insulating 4H-SiC substrates are demonstrated. Physical vapor deposited SiO2 is used as the gate dielectric. A two-dimensional hexagonal arrangement of carbon atoms with the correct lattice vectors, observed by high-resolution scanning tunneling microscopy, confirms the formation of multiple graphene layers on top of the SiC substrates. The observation of n-type and p-type transition further verifies Dirac Fermions' unique transport properties in graphene layers. The measured electron and hole mobilities on these fabricated graphene FETs are as high as 5400 and 4400 cm(2)/V s, respectively, which are much larger than the corresponding values from conventional SiC or silicon. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available