4.0 Article

Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia

Journal

SYNAPSE
Volume 54, Issue 3, Pages 156-163

Publisher

WILEY
DOI: 10.1002/syn.20078

Keywords

typical antipsychotics; tardive dyskinesia; dopamine supersensitivity; oxidative stress; ESR spectroscopy

Categories

Funding

  1. NINDS NIH HHS [NS20036] Funding Source: Medline

Ask authors/readers for more resources

The typical antipsychotic drug haloperidol causes vacuous chewing movements (VCM) in rats, which are representative of early-Parkinsonian symptoms or later-onset extrapyramidal side effects of tardive dyskinesia (TD) in humans. Haloperidol (BP) has been hypothesized to potentiate increases in oxidative stress or free radical-mediated levels of toxic metabolites in rat striatum while simultaneous upregulating dopamine (DA)-D2 receptors leading to presumed DA supersensitivity. Alpha(alpha)-Phenyl-N-tert-butylnitrone (PBN) is an antioxidant used to combat oxidative stress and measure increases in PBN spin-adduct activity. Thus, the aim of this study was to investigate whether VCMs are related to upregalation of DA-D2 receptors or to increased levels of free radicals produced during oxidative stress, and whether PBN had any protective effects. Rats received daily chronic (28 day) i.p. injections of saline, haloperidol (2 mg/kg), PBN (150 mg/kg), or haloperidol + PBN. The VCM model was used to measure extrapyramidal side effects of drug treatments. Electron spin resonance (ESR) spectroscopy was performed to compare concentrations of free radical species in rats receiving injections of HP + PBN. To examine the upregulation of DA-D2 receptors, binding assays were carried out to assess the increase in DA-D2 receptor numbers with respect to VCMs following treatment of rats injected with UP, PBN, and BP + PBN. Results of these experiments show that HP-induced VCMs in rats results from increases in oxidative cellular events and may not be related to increases in striatal DA-D2 receptors. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available