4.5 Article

Gene expression profile following stable expression of the cellular prion protein

Journal

CELLULAR AND MOLECULAR NEUROBIOLOGY
Volume 24, Issue 6, Pages 793-814

Publisher

KLUWER ACADEMIC/PLENUM PUBL
DOI: 10.1007/s10571-004-6920-0

Keywords

CDR34; cellular prion protein; complement; extracellular matrix; microarray; neurodegeneration; PPP2R2B

Ask authors/readers for more resources

1. The cellular prion protein (PrPC) is expressed widely in neural and nonneural tissues at the highest level in neurons in the central nervous system (CNS). 2. Recent studies indicated that transgenic mice with the cytoplasmic accumulation of PrPC exhibited extensive neurodegeneration in the cerebellum, although the underlying mechanism remains unknown. To identify the genes whose expression is controlled by overexpression of PrPC in human cells, we have established a stable PrPC-expressing HEK293 cell line designated P1 by the site-specific recombination technique. 3. Microarray analysis identified 33 genes expressed differentially between P1 and the parent PrPC-non-expressing cell line among 12,814 genes examined. They included 18 genes involved in neuronal and glial functions, 5 related to production of extracellular matrix proteins, and 2 located in the complement cascade. 4. Northern blot analysis verified marked upregulation in P1 of the brain-specific protein phosphatase 2A beta subunit (PPP2R2B), a causative gene of spinocerebellar ataxia 12, and the cerebellar degeneration-related autoantigen (CDR34) gene associated with development of paraneoplastic cerebellar degeneration. 5. These results indicate that accumulation of PrPC in the cell caused aberrant regulation of a battery of the genes important for specific neuronal function. This represents a possible mechanism underlying PrPC-mediated selective neurodegeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available