4.7 Article

Global embedding of D-dimensional black holes with a cosmological constant in Minkowskian spacetimes:: Matching between Hawking temperature and Unruh temperature -: art. no. 124033

Journal

PHYSICAL REVIEW D
Volume 70, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.70.124033

Keywords

-

Ask authors/readers for more resources

We study the matching between the Hawking temperature of a large class of static D-dimensional black holes and the Unruh temperature of the corresponding higher dimensional Rindler spacetime. In order to accomplish this task we find the global embedding of the D-dimensional black holes into a higher dimensional Minkowskian spacetime, called the global embedding Minkowskian spacetime procedure (GEMS procedure). These global embedding transformations are important on their own, since they provide a powerful tool that simplifies the study of black hole physics by working instead, but equivalently, in an accelerated Rindler frame in a flat background geometry. We discuss neutral and charged Tangherlini black holes with and without cosmological constant, and in the negative cosmological constant case, we consider the three allowed topologies for the horizons (spherical, cylindrical/toroidal, and hyperbolic).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available