4.7 Article

Mechanism for deactivation of Rubisco under moderate heat stress

Journal

PHYSIOLOGIA PLANTARUM
Volume 122, Issue 4, Pages 513-519

Publisher

WILEY
DOI: 10.1111/j.1399-3054.2004.00419.x

Keywords

-

Categories

Ask authors/readers for more resources

Photosynthesis is particularly sensitive to direct inhibition by heat stress. This inhibition is closely associated with the inactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). To develop a more complete understanding of the mechanism of inactivation of Rubisco under moderate heat stress, various aspects of the process were examined both in vivo and in vitro. Experiments with isolated Rubisco revealed that the rate of synthesis of the catalytic misfire product, xylulose-1,5-bisphosphate, increased with temperature. Activated Rubisco, produced by reaction with activase at a control temperature of 25degreesC or by incubation with high CO2, deactivated when the temperature of the reaction exceeded temperatures that were equivalent to the optimum for activase adenosine triphosphatase (ATPase) activity. Measurements of the activation state of Rubisco in cotton and tobacco leaves showed that Rubisco inactivated within 7 s of imposing a heat stress. Thus, elevated temperature had an opposite effect on the two processes that ultimately determine the activation state of Rubisco, decreasing activase activity but stimulating the catalytic misfire reaction that inactivates Rubisco. These data support a mechanism for the inactivation of Rubisco at high temperature involving an inability of activase to overcome the inherently faster rates of Rubisco inactivation. That the net effect of elevated temperatures on Rubisco activation is similar both in vivo and under controlled conditions in vitro argues for a direct effect of temperature on the activation of Rubisco by activase and against the proposal that the deactivation of Rubisco under moderate heat stress is a secondary consequence of perturbations in the thylakoid membrane.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available