4.7 Article

New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks

Journal

NEUROIMAGE
Volume 23, Issue 4, Pages 1283-1298

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2004.06.047

Keywords

neuron reconstruction; laser scanning confocal microscopy; geodesic; active contour models; generalized cylinders; morphology

Ask authors/readers for more resources

Exact geometrical reconstructions of neuronal architecture are indispensable for the investigation of neuronal function. Neuronal shape is important for the wiring of networks, and dendritic architecture strongly affects neuronal integration and firing properties as demonstrated by modeling approaches. Confocal microscopy allows to scan neurons with submicron resolution. However, it is still a tedious task to reconstruct complex dendritic trees with fine structures just above voxel resolution. We present a framework assisting the reconstruction. User time investment is strongly reduced by automatic methods, which fit a skeleton and a surface to the data, while the user can interact and thus keeps full control to ensure a high quality reconstruction. The reconstruction process composes a successive gain of metric parameters. First, a structural description of the neuron is built, including the topology and the exact dendritic lengths and diameters. We use generalized cylinders with circular cross sections. The user provides a rough initialization by marking the branching points. The axes and radii are fitted to the data by minimizing an energy functional, which is regularized by a smoothness constraint. The investigation of proximity to other structures throughout dendritic trees requires a precise surface reconstruction. In order to achieve accuracy of 0.1 mum and below, we additionally implemented a segmentation algorithm based on geodesic active contours that allow for arbitrary cross sections and uses locally adapted thresholds. In summary, this new reconstruction tool saves time and increases quality as compared to other methods, which have previously been applied to real neurons. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available