4.6 Article

Spin injection from Co2MnGa into an InGaAs quantum well

Journal

APPLIED PHYSICS LETTERS
Volume 92, Issue 23, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2938418

Keywords

-

Ask authors/readers for more resources

We have demonstrated spin injection from a full Heusler alloy Co2MnGa thin film into a (100) InGaAs quantum well in a semiconductor light-emitting diode structure at a temperature of 5 K. The detection is performed in the oblique Hanle geometry, allowing quantification of the effective spin lifetime and spin detection efficiency (22 +/- 4%). This work builds on existing studies on off-stoichiometric Heusler injectors into similar light-emitting-diode structures. The role of injector stoichiometry can therefore be quantitatively assessed with the result that the spin injection efficiency increases by a factor of approximately 2 as compared with an off-stoichiometric Co2.4Mn1.6Ga injector. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available