4.7 Article

Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes

Journal

CEMENT AND CONCRETE RESEARCH
Volume 34, Issue 12, Pages 2297-2307

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cemconres.2004.04.007

Keywords

calcium silicate hydrate (C-S-H); microstructure; small-angle neutron scattering; surface area; degradation

Ask authors/readers for more resources

Thin coupons of white portland cement (WPC) and tricalcium silicate paste were decalcified by leaching in concentrated ammonium nitrate solutions, resulting in calcium-to-silicon molar ratios (C/S) ranging from 3.0 (control) down to 0.3. The microstructure and surface area were measured using both small-angle neutron scattering (SANS) and nitrogen gas sorption. The intensity in the SANS data regime corresponding to the volume fractal C-S-H gel phase increased significantly on leaching, and the total surface area per unit specimen volume measured by SANS doubled on leaching from C/S = 3.0 to near C/S = 1.0. The nitrogen BET surface area of the WPC pastes, expressed in the same units, increased on decalcification as well, although not as sharply. The primary cause of these changes is a transformation of the high-density inner product C-S-H gel, which normally has a low specific surface area as measured by SANS and nitrogen gas sorption, into a morphology with a high specific surface area. The volume fractal exponent corresponding to the C-S-H gel phase decreased with decalcification from 2.3 to 2.0, indicating that the equiaxed 5 nm C-S-H globule building blocks that form the volume fractal microstructure of normal, unleached cement paste are transformed by decalcification into sheetlike structures of increasing thickness. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available