4.3 Article

Phylogenetic analysis of the complete genome sequence of Encephalitozoon cuniculi supports the fungal origin of microsporidia and reveals a high frequency of fast-evolving genes

Journal

JOURNAL OF MOLECULAR EVOLUTION
Volume 59, Issue 6, Pages 780-791

Publisher

SPRINGER
DOI: 10.1007/s00239-004-2673-0

Keywords

microsporidia; Encephalitozoon cuniculi; genome sequence; molecular phylogeny; long-branch attraction; fungi

Ask authors/readers for more resources

Microsporidia are unicellular eukaryotes living as obligate intracellular parasites. Lacking mitochondria, they were initially considered as having diverged before the endosymbiosis at the origin of mitochondria. That microsporidia were primitively amitochondriate was first questioned by the discovery of microsporidial sequences homologous to genes encoding mitochondrial proteins and then refuted by the identification of remnants of mitochondria in their cytoplasm. Various molecular phylogenies also cast doubt on the early divergence of microsporidia, these organisms forming a monophyletic group with or within the fungi. The 2001 proteins putatively encoded by the complete genome of Encephalitozoon cuniculi provided powerful data to test this hypothesis. Phylogenetic analysis of 99 proteins selected as adequate phylogenetic markers indicated that the E. cuniculi sequences having the lowest evolutionary rates preferentially clustered with fungal sequences or, more rarely, with both animal and fungal sequences. Because sequences with low evolutionary rates are less sensitive to the long-branch attraction artifact, we concluded that microsporidia are evolutionarily related to fungi. This analysis also allowed comparing the accuracy of several phylogenetic algorithms for a fast-evolving lineage with real rather than simulated sequences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available