4.5 Article

Ecological risk assessment of tebuthiuron following application on tropical Australian wetlands

Journal

HUMAN AND ECOLOGICAL RISK ASSESSMENT
Volume 10, Issue 6, Pages 1069-1097

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10807030490887140

Keywords

risk assessment; tebuthiuron; toxicity; tropical; wetlands; Australia

Ask authors/readers for more resources

The present study assessed the ecological risks of the herbicide tebuthiuron to freshwater fauna and flora of northern Australia's tropical wetlands. Effects characterization utilized acute and chronic toxicity data of tebuthiuron to local freshwater species (three animals and two plants) as well as toxicity data derived from northern hemisphere species. Species sensitivity distributions (SSDs) for four effects scenarios-plant chronic toxicity (NOEC data), plant chronic toxicity (EC/IC50 data), invertebrate and vertebrate chronic toxicity (NOEC data), and vertebrate acute toxicity (LC50 data)-were used to characterize effects and calculate 10, 5, and 1% hazardous concentrations (HCs). Tebuthiuron concentrations affecting 5% of species (i.e., HC(5)s) for the earlier scenarios were 0.013, 0.093, 9.0, and 97 mg L-1, respectively. Exposure characterization involved the use of historical field monitoring data of tebuthiuron concentrations following application of tebuthiuron to a large infestation of the wetland weed Mimosa pigra (Mimosa). Tebuthiuron concentrations in surface water ranged from below detection to 2.05 mg L-1 and were still measurable up to 10 months following application. A breakpoint regression model was fitted to the field monitoring data, providing a time-dependent estimate of exposure to tebuthiuron. Risk characterization involved the comparison of the SSDs and associated HCs for each of the effects scenarios, with the time-dependent model of tebuthiuron exposure. Modeled tebuthiuron concentrations over the first 12 days post-application were in excess of concentrations required to cause major (i.e., 50% reductions in population numbers) effects to over 85% of freshwater plant species (based on data for phytoplankton and floating macrophytes). Beyond this period and up to 300 d post-application, 10-20% of species were still predicted to be affected. To quantify the probability of prolonged effects, the plant SSDs were compared to a cumulative probability distribution of tebuthiuron measured from 70 d to 293 d post-application. The probability of at least 5% of freshwater plant species experiencing chronic effects due to tebuthiruon at greater than or equal to70 d post-application was 58% based on NOEC data and 8% based on EC/IC50 data. Overlap of the 95% confidence limits of the exposure distribution and plant SSDs indicated substantial uncertainty in the risk estimates. Risks of effects to freshwater invertebrates and vertebrates were generally <1%. It was concluded that tebuthiuron appears to represent a significant and prolonged risk to native freshwater plant species, particularly phytoplankton and floating macrophytes, whereas the risks to freshwater invertebrates and vertebrates appear low. However, from a management perspective, the risks of tebuthiuron (and other herbicides) must be weighed against the known, serious environmental and economic impacts of the target weed, Mimosa. Overall, the outcomes of the risk assessment support the various management options that have been implemented with regard to the use of tebuthiuron to control Mimosa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available