4.4 Article

Regulation of iron transport in Streptococcus pneumoniae by RitR, an orphan response regulator

Journal

JOURNAL OF BACTERIOLOGY
Volume 186, Issue 23, Pages 8123-8136

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.186.23.8123-8136.2004

Keywords

-

Categories

Funding

  1. NHGRI NIH HHS [5R44HG002193-03] Funding Source: Medline
  2. NIAID NIH HHS [K08 AI001767, AI01767-01A1] Funding Source: Medline
  3. PHS HHS [K08 404/06] Funding Source: Medline

Ask authors/readers for more resources

RitR (formerly RR489) is an orphan two-component signal transduction response regulator in Streptococcus pneumoniae that has been shown to be required for lung pathogenicity. In the present study, by using the rough strain R800, inactivation of the orphan response regulator gene ritR by allele replacement reduced pathogenicity in a cyclophosphamide-treated mouse lung model but not in a thigh model, suggesting a role for RitR in regulation of tissue-specific virulence factors. Analysis of changes in genome-wide transcript mRNA levels associated with the inactivation of ritR compared to wild-type cells was performed by the use of high-density DNA microarrays. Genes with a change in transcript abundance associated with inactivation of ritR included piuB, encoding an Fe permease subunit, and piuA, encoding an Fe carrier-binding protein. In addition, a dpr ortholog, encoding an H2O2 resistance protein that has been shown to reduce synthesis of reactive oxygen intermediates, was activated in the wild-type (ritR(+)) strain. Microarray experiments suggested that RitR represses Fe uptake in vitro by negatively regulating the Pin hemin-iron transport system. Footprinting experiments confirmed site-specific DNA-binding activity for RitR and identified three binding sites that partly overlap the +1 site for transcription initiation upstream of piuB. Transcripts belonging to other gene categories found to be differentially expressed in our array studies include those associated with (i) H2O2 resistance, (ii) repair of DNA damage, (iii) sugar transport and capsule biosynthesis, and (iv) two-component signal transduction elements. These observations suggest that RitR is an important response regulator whose primary role is to maintain iron homeostasis in S. pneumoniae. The name ritR (repressor of iron transport) for the orphan response regulator gene, rr489, is proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available