4.4 Article

Arabidopsis DNA double-strand break repair pathways

Journal

BIOCHEMICAL SOCIETY TRANSACTIONS
Volume 32, Issue -, Pages 964-966

Publisher

PORTLAND PRESS
DOI: 10.1042/BST0320964

Keywords

Arabidopsis; bleomycin; DNA; double-strand break (DSB); homologous recombination (HR); mitomycin C

Ask authors/readers for more resources

DSBs (double-strand breaks) are one of the most serious forms of DNA damage that can occur in a cell's genome. DNA replication in cells containing DSBs, or following incorrect repair, may result in the loss of large amounts of genetic material, aneuploid daughter cells and cell death. There are two major pathways for DSB repair: HR (homologous recombination) uses an intact copy of the damaged region as a template for repair, whereas NHEJ (non-homologous end-joining) rejoins DNA ends independently of DNA sequence. In most plants, NHEJ is the predominant DSB repair pathway. Previously, the Arabidopsis NHEJ mutant atku80 was isolated and found to display hypersensitivity to bleomycin, a drug that causes DSBs in DNA. In the present study, the transcript profiles of wild-type and atku80 mutant plants grown in the presence and absence of bleomycin are determined by microarray analysis. Several genes displayed very strong transcriptional induction specifically in response to DNA damage, including the characterized DSB repair genes AtRAD51 and AtBRCA1. These results identify novel candidate genes that encode components of the DSB repair pathways active in NHEJ mutant plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available