4.6 Article

Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells

Journal

APPLIED PHYSICS LETTERS
Volume 93, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2996017

Keywords

-

Ask authors/readers for more resources

In order to increase the electrical contact area between TiO2 particles and stainless steel (StSt) substrates of the dye-sensitized solar cells (DSSCs), StSt foil was roughened electrochemically using sulfuric acid with some additives. Compared with the DSSC with nontreated StSt substrate, DSSC with this roughened StSt substrate showed a 33% increase in light-to-electricity conversion efficiency with negligible effect on open circuit voltage (Voc) and fill factor. Electrochemical impedance spectroscopy clearly confirmed that the increased performance was due to a decreased electrical resistance at the TiO2/StSt interface. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available