4.8 Article

Cloning and in vitro expression and characterization of the androgen receptor and isolation of estrogen receptor α from the fathead minnow (Pimephales promelas)

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 38, Issue 23, Pages 6314-6321

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es049771j

Keywords

-

Ask authors/readers for more resources

In vitro screening assays designed to identify hormone mimics or antagonists typically use mammalian (rat, human) estrogen (ER) and androgen receptors (AR). Although we know that the amino acid sequences of steroid receptors in nonmammalian vertebrates are not identical to the mammalian receptors, a great deal of uncertainty exists as to whether these differences affect interactions of potential endocrine-disrupting chemicals (EDC) with the receptors. This leads to substantial uncertainty with respect to the utility of mammalian-based screening assays to predict possible effects of EDCs in nonmammalian wildlife. This paper describes preparation of a cDNA library from a small fish model commonly used in ecological risk assessments, the fathead minnow (Pimphales promelas). The cDNA library was subsequently used to isolate and sequence both AIR and Malpha. In addition, the fathead minnow (fh)AR was expressed and characterized with respect to function using saturation and competitive binding assays in COS monkey kidney cells. Saturation experiments along with subsequent Scatchard analysis determined that the K-d of the fhAR for the potent synthetic androgen R1881 was 1.8 nM, which is comparable to that for the human AIR in the same assay system. In COS whole cell competitive binding assays, potent androgens such as dihydrotestosterone and 11-ketotestosterone were also shown to be high affinity ligands for the fhAR. We also report affinity of the receptor for a number of environmental contaminants including the AR agonists androstenedione and 17alpha-and 17beta-trenbolone;AR antagonists such as p,p'-DDE, linuron, and vinclozolin; and the ER agonist 17beta-estradiol. Future plans include comparison of binding affinities of the fhAR to those of the human AR, also expressed in COS cells, using a range of EDCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available