4.5 Article

A mass spectrometric western blot to evaluate the correlations between histone methylation and histone acetylation

Journal

PROTEOMICS
Volume 4, Issue 12, Pages 3765-3775

Publisher

WILEY
DOI: 10.1002/pmic.200400819

Keywords

histone acetylation; histone methylation; mass spectrometry

Ask authors/readers for more resources

Histone acetylation, methylation, and phosphorylation occur predominantly in the unstructured N-terminal domains or histone tails. These modifications and others comprise a histone code that directly facilitates or antagonizes association of regulatory proteins with nucleosomes to mediate changes in chromatin structure and activity. Methylation of histone H3 outside of the tail region at lysine 79 has been reported for a variety of species ranging from yeast to humans and in some gene-specific cases appears to be associated with active chromatin and transcription. Whether methylation of lysine 79 is associated with other post-translational modifications of the H3 tail is unknown. Using mass spectrometric relative quantitation, a mass spectrometric Western blot, we compare methylation at lysines 4, 9, and 79 with acetylation of human histone H3. We find that the total levels of lysine 4 and 79 methylation (combined mono-, di-, and trimethylation) in the H3 population increase with the degree of H3 tail acetylation. The total amount of lysine 4 methylation increases progressively from less than 10% in the nonacetylated H3 to greater than 90% in the penta-acetylated H3. In addition, significant levels of lysine 4 trimethylation also occur in combination with the pentaacetylated H3 species. In contrast, the level of H3 lysine 9 trimethylation is greatest for the monoacetylated species while H3 lysine 9 acetylation occurs predominantly in hyperacetylated (tetra- and penta-acetylated) H3 isoforms. Together, these results indicate that methylation of lysine 4 and 79 as well as the switch from lysine 9 methylation to acetylation are coordinated synchronously with H3 hyperacetylation as marks of active chromatin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available