4.4 Article

Differential activation of eIF2 kinases in response to cellular stresses in Schizosaccharomyces pombe

Journal

GENETICS
Volume 168, Issue 4, Pages 1867-1875

Publisher

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.104.031443

Keywords

-

Funding

  1. NIGMS NIH HHS [R01GM643540, R01GM49164, R01 GM049164] Funding Source: Medline

Ask authors/readers for more resources

Phosphorylation of enkaryotic initiation factor-2 (eIF2) is an important mechanism mitigating cellular injury in response to diverse environmental stresses. While all eukaryotic organisms characterized to date contain an eIF2 kinase stress response pathway, the composition of eIF2 kinases differs, with mammals containing four distinct family members and the well-studied lower eukaryote Saccharomyces cerevisiae expressing only a single eIF2 kinase. We are interested in the mechanisms by which multiple eIF2 kinases interface with complex stress signals and elicit response pathways. In this report we find that in addition to two previously described eIF2 kinases related to mammalian HRI, designated Hri1p and Hri2p, the yeast Schizosaccharomyces pombe expresses a third eIF2 kinase, a Gcn2p ortholog. To delineate the roles of each eIF2 kinase, we constructed S. pombe strains expressing only a single eIF2 kinase gene or deleted for the entire eIF2 kinase family. We find that Hri2p is the primary activated eIF2 kinase in response to exposure to heat shock, arsenite, or cadmium. Gcn2p serves as the primary eIF2 kinase induced during a nutrient downshift, treatment with the amino acid biosynthetic inhibitor 3-aminotriazole, or upon exposure to high concentrations of sodium chloride. In one stress example, exposure to H2O2, there is early tandem activation of both Hri2p and Gcn2p. Interestingly, with extended stress conditions there is activation of alternative secondary eIF2 kinases, suggesting that eukaryotes have mechanisms of coordinate activation of eIF2 kinase in their stress remediation responses. Deletion of these eIF2 kinases renders S. pombe more sensitive to many of these stress conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available