4.5 Article

Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering

Journal

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume 284, Issue -, Pages 77-85

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmmm.2004.06.046

Keywords

YIG; magneto-optical; faraday rotation; quartz and GGG substrates

Ask authors/readers for more resources

Thin films of yttrium iron garnet (YIG) are grown by radio frequency magnetron non reactive sputtering system. Thin films are crystallised by heat-treatment to obtain magneto-optical properties. On quartz substrate, the network of cracks observed on the annealed samples can be explained by the difference between the thermal expansion coefficient of substrate and YIG. Physico-chemical analysis shown that the obtained material has a correct stoichiometry and is crystallised as FCC. The Faraday rotation of thin films is measured with a classical ellipsometric system based on transmission which allows us to obtained an accuracy of 0.01degrees. The variation of Faraday rotation is studied on the one hand versus radio frequency power applied to the cathode during the deposition and on the other hand versus the applied magnetic field. The results are compared with those obtained by vibrating sample magnetometer analysis in perpendicular configuration. A maximum Faraday rotation is observed to be 1900degrees/cm at the wavelength of 594 nm for a YIG thin film formed on quartz substrate and annealed at 740degreesC. The values of the Faraday rotation coefficients obtained in the study versus the wavelength are comparable to those of the literature for the bulk material. In order to eliminate the stress due to the heat-treatment, we made some films on single crystals of gadolinium gallium garnet (1 1 1) substrates for which thermal expansion coefficient is near than the YIG one. The material crystallises with no crackles and the Faraday effect is equivalent. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available