4.5 Article

U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area

Journal

AMERICAN JOURNAL OF SCIENCE
Volume 304, Issue 10, Pages 889-929

Publisher

AMER JOURNAL SCIENCE
DOI: 10.2475/ajs.304.10.889

Keywords

-

Ask authors/readers for more resources

The eastern syntaxis of the Himalayas is expressed in the crust as a pronounced southward bend in the orogen. The change in strike of geologic features coincides with the high topography of the Namche Barwa region, the exposure of granulite-grade metamorphic rocks, and a 180-degree bend in the Yalu Tsangpo. We have conducted a geochronologic and geochemical investigation of several suites of granitoids collected from the Namche Barwa massif and subjacent terranes of southeastern Tibet, ranging from cm-scale dikes and sills to larger, outcrop-scale intrusions. U-Pb SHRIMP-RG zircon ages establish at least five magmatic episodes: similar to400 to 500 Ma, similar to120 Ma, 40 to 70 Ma, 18 to 25 Ma, and 3 to 10 Ma. These episodes broadly correlate to spatial patterns in sample localities, as follows: 400 to 500 Ma ages occur in zircon cores collected from within the massif proper; similar to120 Ma granites, related to early Gangdese arc plutonism, are primarily located northeast of Namche Barwa; later (40 - 70 Ma) Gangdese activity is expressed in granites west of Namche Barwa. 18 to 25 Ma granites occur both along the suture zone west of Gyala Peri, and directly north of Namche Barwa along the area of the jiali fault zone, and are attributed both to shearing within the jiali fault zone and to an early Miocene Gangdese Thrust event. Exceptionally young (<10 Ma) zircon ages are clustered near the core of the massif, along the Yalu Tsangpo gorge. Trace-element geochemical data indicates the presence of both fluid-present and fluid absent melts, with a fluid-absent (decompression) melting regime dominating near the core of Namche Barwa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available