4.6 Article

Neutralization of Smac/Diablo by inhibitors of apoptosis (IAPs) - A caspase-independent mechanism for apoptotic inhibition

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 49, Pages 51082-51090

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M408655200

Keywords

-

Funding

  1. NCI NIH HHS [T32 CA09676] Funding Source: Medline

Ask authors/readers for more resources

Numerous members of the IAP family can suppress apoptotic cell death in physiological settings. Whereas certain IAPs directly inhibit caspases, the chief proteolytic effectors of apoptosis, the protective effects of other IAPs do not correlate well with their caspase inhibitory activities, suggesting the involvement of alternative cytoprotective abilities. To examine this issue, we have characterized the protective effects of an ancestral, baculoviral IAP (Op-IAP) in mammalian cells. We show that although Op-IAP potently inhibited Bax-mediated apoptosis in human cells, Op-IAP failed to directly inhibit mammalian caspases. However, Op-IAP efficiently bound the IAP antagonist Smac/Diablo, thereby preventing Smac/Diablo-mediated inhibition of cellular IAPs. Whereas reduction of Smac/Diablo protein levels in the absence of Op-IAP prevented Bax-mediated apoptosis, overexpression of Smac/Diablo neutralized Op-IAP-mediated protection, and an Op-IAP variant unable to bind Smac/Diablo failed to prevent apoptosis. Finally, Op-IAP catalyzed the ubiquitination of Smac/Diablo, an activity that contributed to Op-IAP-mediated inhibition of apoptosis. These data show that cytoprotective IAPs can inhibit apoptosis through the neutralization of IAP antagonists, rather than by directly inhibiting caspases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available