4.6 Article

Atypical soluble guanylyl cyclases in Drosophila can function as molecular oxygen sensors

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 49, Pages 50651-50653

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C400461200

Keywords

-

Funding

  1. NINDS NIH HHS [NS29740] Funding Source: Medline

Ask authors/readers for more resources

Conventional soluble guanylyl cyclases are heterodimeric enzymes that synthesize cGMP and are activated by nitric oxide. Recently, a separate class of soluble guanylyl cyclases has been identified that are only slightly activated by or are insensitive to nitric oxide. These atypical guanylyl cyclases include the vertebrate beta2 subunit and examples from the invertebrates Manduca sexta, Caenorhabditis elegans, and Drosophila melanogaster. A member of this family, GCY-35 in C. elegans, was recently shown to be required for a behavioral response to low oxygen levels and may be directly regulated by oxygen (Gray, J. M., Karow, D. S., Lu, H., Chang, A. J., Chang, J. S., Ellis, R. E., Marletta, M. A., and Bargmann, C. I. ( 2004) Nature 430, 317 - 322). Drosophila contains three genes that code for atypical soluble guanylyl cyclases: Gyc-88E, Gyc-89Da, and Gyc-89Db. COS-7 cells co-transfected with Gyc-88E and Gyc-89Da or Gyc-89Db accumulate low levels of cGMP under normal atmospheric oxygen concentrations and are potently activated under anoxic conditions. The increase in activity is graded over oxygen concentrations of 0 - 21%, can be detected within 1 min of exposure to anoxic conditions and is blocked by the soluble guanylyl cyclase inhibitor, 1H-[1,2,4] oxadiazolo[ 4,3-a] quinoxaline-1-one (ODQ). Gyc-88E and Gyc-89Db are co-expressed in a subset of sensory neurons where they would be ideally situated to act as oxygen sensors. This is the first demonstration of a soluble guanylyl cyclase that is activated in response to changing oxygen concentrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available