4.6 Article

The fibril-associated collagen IX provides a novel mechanism for cell adhesion to cartilaginous matrix

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 49, Pages 51677-51687

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M409412200

Keywords

-

Ask authors/readers for more resources

Collagen IX is the prototype fibril-associated collagen with interruptions in triple helix. In human cartilage it covers collagen fibrils, but its putative cellular receptors have been unknown. The reverse transcription-PCR analysis of human fetal tissues suggested that based on their distribution all four collagen receptor integrins, namely alpha(1)beta(1), alpha(2)beta(1), alpha(10)beta(1), and alpha(11)beta(1), are possible receptors for collagen IX. Furthermore primary chondrocytes and chondrosarcoma cells express the four integrins simultaneously. Chondrosarcoma cells, as well as Chinese hamster ovary cells transfected to express alpha(1)beta(1), alpha(2)beta(1), or alpha(10)beta(1) integrin as their only collagen receptor, showed fast attachment and spreading on human recombinant collagen IX indicating that it is an effective cell adhesion protein. To further study the recognition of collagen IX we produced recombinant alphaI domains in Escherichia coli. For each of the four alphaI domains, collagen IX was among the best collagenous ligands, making collagen IX exceptional compared with all other collagen subtypes tested so far. Rotary shadowing electron microscopy images of both alpha(1)I- and alpha(2)I-collagen IX complexes unveiled only one binding site located in the COL3 domain close to the kink between it and the COL2 domain. The recognition of collagen IX by alpha(2)I was considered to represent a novel mechanism for two reasons. First, collagen IX has no GFOGER motif, and the identified binding region lacks any similar sequences. Second, the alpha(2)I domain mutations D219R and H258V, which both decreased binding to collagen I and GFOGER, had very different effects on its binding to collagen IX. D219R had no effect, and H258V prevented type IX binding. Thus, our results indicate that collagen IX has unique cell adhesion properties when compared with other collagens, and it provides a novel mechanism for cell adhesion to cartilaginous matrix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available