4.5 Article

A model of a transmembrane drug-efflux pump from Gram-negative bacteria

Journal

FEBS LETTERS
Volume 578, Issue 1-2, Pages 5-9

Publisher

WILEY
DOI: 10.1016/j.febslet.2004.10.097

Keywords

pump-channel; multidrug resistance; transmembrane transport; homology modelling; molecular docking and allostery

Ask authors/readers for more resources

In Gram-negative bacteria, drug resistance is due in part to the activity of transmembrane efflux-pumps, which are composed of three types of proteins. A representative pump from Escherichia coli is an assembly of the trimeric outer-membrane protein TolC, which is an allosteric channel, the trimeric inner-membrane proton-antiporter AcrB, and the periplasmic protein, AcrA. The pump displaces drugs vectorially from the bacterium using proton electrochemical force. Crystal structures are available for TolC and AcrB from E. coli, and for the AcrA homologue MexA from Pseudomonas aeruginosa. Based on homology modelling and molecular docking, we show how AcrA, AcrB and TolC might assemble to form a tripartite pump, and how allostery may occur during transport. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available