3.8 Article

Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors

Journal

MOLECULAR BRAIN RESEARCH
Volume 132, Issue 1, Pages 87-92

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molbrainres.2004.08.025

Keywords

brain endothelium; endocannabinoids; receptors; Ca2+ influx; VASP

Categories

Ask authors/readers for more resources

The arachidonic acid derivative, 2-arachidonoyl-glycerol (2-AG), was initially isolated from gut and brain; it is also produced and released from blood and vascular cells. Many of the 2-AG-induced cellular responses (i.e., neuromodulation, cytoprotection and vasodilation) are mediated by cannabinoid receptors CB1 and CB2. The findings presented here demonstrate the expression of CB1, CB2 and TRPV1 receptors on cerebromicrovascular endothelial cells (HBEC). The expression of TRPV1, CB1 and CB2 receptor mRNA and proteins were demonstrated by RT-PCR and polyclonal antibodies, respectively. The endocannabinoid 2-AG, and other related compounds [anandamide (ANA), methanandamide (m-ANA), N-(4-hydroxyphenyl-arachidonyl-ethanolamide) (AM404) and capsaicin] dose-dependently stimulated Ca2+ influx in HBEC. The selective TRPV1 receptor antagonist (capsazepine), CB1 receptor antagonist (SR141716A) and CB2 receptor antagonist (SR144528) inhibited these responses. The effects of capsaicin, a specific agonist for TRPV1 receptors, were inhibited by capsazepine, but only weakly by CB1 or CB2 receptor antagonists. 2-AG also induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP); this response was mediated by VR1 receptors. These studies clearly indicate that 2-AG and other related compounds may function as agonists on VR1 receptors, as well as CB1 and CB2 receptors, and implicated these factors in various HBEC functions. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available