4.4 Article

Structural basis for the self-chaperoning function of an RNA collapsed state

Journal

BIOCHEMISTRY
Volume 43, Issue 48, Pages 15179-15186

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi048626f

Keywords

-

Funding

  1. NIGMS NIH HHS [GM56222] Funding Source: Medline

Ask authors/readers for more resources

Prior to folding to a native functional structure, many large RNAs form conformationally collapsed states. Formation of the near-native collapsed state for the bI5 group I intron RNA plays an obligatory role in self-chaperoning assembly with its CBP2 protein cofactor by preventing formation of stable, misassembled complexes. We show that the collapsed state is essential because CBP2 assembles indiscriminately with the bI5 RNA in any folding state to form long-lived complexes. The most stable protein interaction site in the expanded state-CBP2 complex overlaps, but is not identical to, the native site. Folding to the collapsed state circumvents two distinct misassembly events: inhibitory binding by multiple equivalents of CBP2 and formation of bridged complexes in which CBP2 straddles cognate and noncognate RNAs. Strikingly, protein-bound sites in the expanded state RNA complex are almost the inverse of native RNA-RNA and RNA-protein interactions, indicating that folding to the collapsed state significantly reduces the fraction of RNA surfaces accessible for misassembly. The self-chaperoning function for the bI5 collapsed state is likely to be conserved in other ribonucleoproteins where a protein cofactor binds tightly at a simple RNA Substructure or has an RNA binding, surface composed of multiple functional sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available