4.7 Article

Influence of self-complementary hydrogen bonding on solution rheology/electrospinning relationships

Journal

POLYMER
Volume 45, Issue 26, Pages 8705-8715

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2004.10.049

Keywords

electrospinning; entanglement concentration; self-complementary hydrogen bonding

Ask authors/readers for more resources

A series of poly(alkyl methacrylate)s that contained either pendant carboxylic acid or self-complementary multiple hydrogen bonding (SCMHB) groups were synthesized to determine the influence of intermolecular associations on solution rheology and electrospirming performance. The cosolvent composition was varied in order to control the dielectric constant of the electrospinning solvent. By controlling the dielectric constant of the solvent, intermolecular interactions were systematically screened, and the influence of hydrogen bonding on electrospun fiber morphology was determined. While the diameter of the electrospun poly(methyl methacrylate) (PMMA) fibers were in excellent agreement with previously developed predictions, the diameter of the electrospun poly(methyl methacrylate-co-methacrylic acid) (PMMA-co-PMAA) fibers were smaller than predicted when electrospun from dimethyl formamide (DMF). The smaller PMMA-co-PMAA fibers were attributed to dissociation of the carboxylic acid group, which resulted in increased solution conductivity. The poly(methyl methacrylate-co-SCMHB methacrylate) (PMMA-co-SCMHB) displayed significant hydrogen bonding associations with decreasing solvent dielectric constant (D) which resulted in increased viscosity and lower entanglement concentration (Ce). Moreover, strong hydrogen bonding between the SCMHB groups in relatively nonpolar solvents increased the apparent molecular weight of the copolymers, and significantly larger electrospun fibers than predicted were obtained. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available