4.6 Review

The significance of focal myoepithelial cell layer disruptions in human breast tumor invasion: a paradigm shift from the protease-centered hypothesis

Journal

EXPERIMENTAL CELL RESEARCH
Volume 301, Issue 2, Pages 103-118

Publisher

ELSEVIER INC
DOI: 10.1016/j.yexcr.2004.08.037

Keywords

human breast tumor microinvasion; ductal carcinoma in situ; focal myoepithelial layer disruption; basement membrane degradation; leukocyte infiltration; epithelial-stromal interactions; cell proliferation; loss of heterozygosity (LOH); protease-centered' hypothesis; matrix metalloproteinase inhibitors (MMPIs)

Funding

  1. NCI NIH HHS [CA78646] Funding Source: Medline

Ask authors/readers for more resources

Human breast epithelium and the stroma are separated by a layer of myoepithelial (ME) cells and basement membrane, whose disruption is a prerequisite for tumor invasion. The dissolution of the basement membrane is traditionally attributed primarily to an over-production of proteolytic enzymes by the tumor or the surrounding stromal cells. The results from matrix metalloprotemase inhibitor clinical trials, however, suggest that this protease-centered hypothesis is inadequate to completely reflect the molecular mechanisms of tumor invasion. The causes and signs of ME cell layer disruption are currently under-explored. Our studies revealed that a subset of pre- and micro-invasive tumors contained focal disruptions in the ME cell layers. These disruptions were associated with immunohistochemical and genetic alterations in the overlying tumor cells, including the loss of estrogen receptor expression, a higher frequency of loss of heterozygosity, and a higher expression of cell cycle, angiogenesis, and invasion-related genes. Focal ME layer disruptions were also associated with a higher rate of epithelial proliferation and leukocyte infiltration. We propose the novel hypothesis that a localized death of ME cells and immunoreactions that accompany an external environmental insult or internal genetic alterations are triggering factors for ME layer disruptions, basement membrane degradation, and subsequent tumor progression and invasion. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available