4.6 Article

Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 50, Pages 52210-52217

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M411033200

Keywords

-

Ask authors/readers for more resources

Transcription of the DNA genome of vaccinia virus occurs in the cytoplasm and is temporally programmed by early, intermediate, and late stage-specific transcription factors in conjunction with a viral multisubunit RNA polymerase. The RNA polymerase, capping enzyme, and three factors (VITF-1, VITF-2, and VITF-3) are sufficient for in vitro transcription of a DNA template containing an intermediate stage promoter. Vaccinia virus intermediate transcription factor (VITF)-1 and -3 are virus-encoded, whereas VITF-2 was partially purified from extracts of uninfected HeLa cells. Using purified and recombinant viral proteins, we showed that the HeLa cell factor was required for transcription of linear or nicked circular templates but not of super coiled DNA. HeLa cell polypeptides of similar to110 and 66 kDa co-purified with VITF-2 activity through multiple chromatographic steps. The polypeptides were separated by SDS-polyacrylamide gel electrophoresis and identified by mass spectrometry as Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and p137, recently named cytoplasmic activation/proliferation-associated protein-1. The co-purification of the two polypeptides with transcription-complementing activity was confirmed with specific antibodies, and their association with each other was demonstrated by affinity chromatography of tagged recombinant forms. Furthermore, recombinant G3BP and p137 expressed individually or together in mammalian or bacterial cells complemented the activity of the viral RNA polymerase and transcription factors. The involvement of cellular proteins in transcription of intermediate stage genes may regulate the transition between early and late phases of vaccinia virus replication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available