4.5 Article

Sorting nexin 5 is localized to a subdomain of the early endosomes and is recruited to the plasma imembrane following EGF stimulation

Journal

JOURNAL OF CELL SCIENCE
Volume 117, Issue 26, Pages 6413-6424

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.01561

Keywords

sorting nexins; Phox homology domain; early endosomes; EGF signalling; phosphoinositides

Categories

Ask authors/readers for more resources

Sorting nexins are a large family of proteins that contain the phosphoinositide-binding Phox homology (PX) domain. A number of sorting nexins are known to bind to PtdIns(3)P, which mediates their localization to membranes of the endocytic pathway. We show here that sorting nexin 5 (SNX5) can be recruited to two distinct membrane compartments. In non-stimulated cells, the PX domain was independently targeted to endosomal structures and colocalized with full-length SNX5. The membrane binding of the PX domain was inhibited by the PI 3-kinase inhibitor, wortmannin. Although SNX5 colocalized with a fluid-phase marker and was found predominantly within a PtdIns(3)P-rich endosomal domain, very little colocalization was observed between SNX5 and the PtdIns(3)P-binding protein, EEA1. Using liposome-based binding assays, we have shown that the PX domain of SNX5 interacts not only with PtdIns(3)P but also with PtdIns(3,4)P-2. In response to EGF stimulation, either the SNX5-PX domain or full-length SNX5 was rapidly recruited to the plasma membrane. The localization of SNX1, which does not bind PtdIns(3,4)P-2, was unaffected by EGF signalling. Therefore, SNX5 is localized to a subdomain of the early endosome distinct from EEA1 and, following EGF stimulation and elevation of PtdIns(3,4)P-2, is also transiently recruited to the plasma membrane. These results indicate that SNX5 may have functions not only associated with endosomal sorting but also with the phosphoinositide-signalling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available